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Abstract

We propose localized functional principal component analysis (LFPCA), looking for orthog-

onal basis functions with localized support regions that explain most of the variability of

a random process. The LFPCA is formulated as a convex optimization problem through

a novel Deflated Fantope Localization method and is implemented through an e�cient al-

gorithm to obtain the global optimum. We prove that the proposed LFPCA converges to

the original FPCA when the tuning parameters are chosen appropriately. Simulation shows

that the proposed LFPCA with tuning parameters chosen by cross validation can almost

perfectly recover the true eigenfunctions and significantly improve the estimation accuracy

when the eigenfunctions are truly supported on some subdomains. In the scenario that the

original eigenfunctions are not localized, the proposed LFPCA also serves as a nice tool in

finding orthogonal basis functions that balance between interpretability and the capability of

explaining variability of the data. The analyses of a country mortality data reveal interesting

features that cannot be found by standard FPCA methods.
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1. INTRODUCTION

Functional principal component analysis has emerged as a major tool to explore the source

of variability in a sample of random curves and has found wide applications in functional

regression, curve classification, and clustering (Castro et al., 1986; Rice and Silverman, 1991;

Cardot, 2000; Yao et al., 2005; Ramsay and Silverman, 2005; Hall and Hosseini-Nasab, 2006).

In this paper, we consider functional principal component analysis with localized support

regions. That is, for a smooth random function X, we look for orthogonal basis functions

with localized support regions that explain most of the variance. The main motivation of the

localized functional principal component analysis (LFPCA) is to find a parsimonious linear

representation of the data that balances the interpretability and the capability of explaining

variance of the stochastic process.

The proposed method outputs localized basis functions whose localization level is con-

trolled by a localization tuning parameter. We propose two methods to select the localiza-

tion parameter, corresponding to two useful applications of our proposed method. First, one

can choose the localization parameter by maximizing the explained variance of the random

process computed by V -fold cross-validation. Our simulation shows that when the eigen-

functions truly have localized support regions, the proposed LFPCA with a localization

parameter chosen by cross-validation significantly improves the estimation accuracy of the

eigenfunctions compared to standard FPCA methods. On the other hand, when the origi-

nal eigenfunctions are not localized, the localization parameter chosen by cross-validation is

expected to be very close to zero and it is confirmed by our numerical studies that the perfor-

mance of the proposed LFPCA is almost identical to standard FPCA methods. The second

method of choosing the localization parameter is to seek the most localized basis functions

that explain a fixed level of variance. This method is particularly useful when the standard

eigenfunctions are not localized, and it makes sense for the proposed LFPCA not to target

at the standard eigenfunctions but to balance between interpretability and the capability

of explaining variance of the stochastic process. Details can be found in Section 3.2. We
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consider a a country mortality data application to illustrate the second method of choosing

the localization parameter. In the country mortality data, the mortality rates at age 60 were

recorded from year 1960–2006 for 27 countries around the world. The first three localized

basis functions, explaining more than 85% variance, correspond to variational modes around

mid 1990s, 1980s, and 1960s, respectively. Another example concerning a growth curve

data is presented in the Online Supplementary File. The first two localized basis functions

explain more than 85% variance, and clearly indicate that the main variational modes of

female height growth are around age 12 and around age 5, perfectly matching the knowledge

of growth spurts. These interesting features cannot be revealed by standard FPCA.

Domain localization has been studied by several authors in the functional regression

model: E(Y |X) = a+
R
T X(t)�(t)dt, where the coe�cient function �(t) is desired to be zero

outside a subdomain T0 2 T with the purpose of improved interpretability (James et al.,

2009; Zhao et al., 2012; Zhou et al., 2013). Most of these methods turn the problem into a

variable selection problem and use LASSO type penalties. In a recent thesis work Lin (2013),

interpretable functional principal component analysis is studied, which has a very similar

flavor as our proposed LFPCA. In their work, an `0 penalty is added on eigenfunctions and

a greedy algorithm based on basis expansion of curves is developed to solve the non-convex

optimization problem. The formulation of localization or domain selection in the context

of functional principal component analysis is quite challenging for at least two reasons.

First, the eigen problem together with a localization penalty is usually not convex, and in

general it is an NP-hard problem to find a global optimum. Second, in order to obtain a

sequence of mutually orthogonal eigen-components, a commonly taken procedure is to deflate

the empirical covariance operator at step j by removing the e↵ect of the previous j � 1

components (White, 1958; Mackey, 2008). But with the localization penalty in the objective

function, this procedure can not guarantee the orthogonality of such sequentially obtained

eigen-components. In sequential estimation of principal components, being orthogonal to the

first component is a natural requirement when looking for the second component, otherwise

the maximization over second direction is not well-defined since the solution would still
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be the first direction. From a dimension reduction perspective, the orthogonality is also

appealing since the resulting k dimensional orthogonal basis leads to very simple calculation

for subsequent inferences.

The main contribution of this paper is three-fold. First, we formulate the LFPCA

as a convex optimization problem with explicit constraint on the orthogonality of eigen-

components. Second, we provide an e�cient algorithm to obtain the global maximum of this

convex problem. Third, we carefully investigate the estimation error from the discretized data

version to the functional continuous version, as well as the complex interaction between the

eigen problem and the localization penalty, and prove consistency of the estimated eigenfunc-

tions. The starting point of our method is a sup-norm consistent estimator of the covariance

operator, up to a constant shift on the diagonal. For dense and equally spaced observations

with or without measurement error, the proposed method can be directly carried out on

the sample covariance, i.e., without the need to perform basis expansion, smoothing of the

individual curves, or smoothing of the estimated covariance operator. For other designs

of functional data, the proposed method is still applicable when an appropriate covariance

estimator is available.

Our formulation of LFPCA borrows ideas from recent developments in sparse principal

component analysis. In Vu et al. (2013); Lei and Vu (2015), a similar convex framework

based on Fantope Projection and Selection has been proposed to estimate a k dimensional

sparse principal subspace of a high dimensional random vector (see also d’Aspremont et al.

(2007) for k = 1). These sparse subspace methods are useful when the union of the support

regions of several leading eigenvectors is sparse. In sparse PCA settings, the notion of

sparsity requires the proportion of non-zero entries in the leading eigenvectors to vanish as

the dimensionality increases and therefore it makes sense to consider the union of the support

regions of several leading eigenvectors to be sparse. However, in functional data settings, the

length ratio of a support subdomain over the entire domain is determined by the random

curve model and usually a constant, and the union of several leading subdomains can be as

large as the entire domain. This is also the reason that we use the notion “localized” instead
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of “sparse”. It has remained challenging to obtain sparse eigenvectors sequentially that each

one is allowed to have a di↵erent support region. A particular challenge is the interaction

between orthogonality and the sparse penalty. Besides the di↵erence between functional

PCA and sparse PCA, one main extension developed in our method is the construction

of a deflated Fantope to estimate individual eigen-components sequentially, with possibly

di↵erent support regions and guaranteed orthogonality. This deflated Fantope formulation

is of independent interest in many other structured principal component analysis.

The rest of this paper is organized as follows. In section 2, we introduce the formulation

of localized functional principal component analysis. Section 3 derives the solution to the

optimization problem and describes the algorithm as well as the selection of tuning param-

eters. Section 4 contains the consistency results. Section 5 and Section 6 present numerical

experiments and data examples to illustrate our method. Section 7 contains some discus-

sions and extensions. Technical details and additional materials are provided in the Online

Supplementary File.

2. LFPCA THROUGH DEFLATED FANTOPE LOCALIZATION

We consider a square integrable random process X(t) : T 7! R over a compact interval T ⇢

R, with mean and covariance functions µ(t) = EX(t) and �(s, t) = Cov(X(s), X(t)), and

covariance operator (�f)(t) =
R
s2T f(s)�(t, s)ds. Under the minimal assumption that �(s, t)

is continuous over (s, t), this operator � has orthonormal eigenfunctions �j(t), j = 1, 2, · · · ,

with nonincreasing eigenvalues �j, satisfying ��j = �j�j. The well known Karhunen-Loève

expansion then gives the representation

X(t) = µ(t) +
1X

j=1

⇠j�j(t), (1)

where ⇠j, j � 1, is a sequence of uncorrelated random variables satisfying E(⇠j) = 0 and

var(⇠j) = �j, with an explicit representation ⇠j =
R
t2T (X(t)� µ(t))�j(t)dt. A key inference

task in functional principal component analysis (FPCA) is to estimate the leading eigen-

functions �j(t), 1  j  k, from n independent sample curves.
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In practice, the underlying sample curves Xi(t), 1  i  n, are usually recorded at a

grid of points and may be contaminated with additive measurement errors. We start with

dense and equally spaced observations

Yil = Xi(tl) + ✏il = µ(tl) +
1X

j=1

⇠ij�j(tl) + ✏il , i = 1 , . . . , n , l = 1 , . . . , p , (2)

where ✏il are independent noises with mean zero and variance �2, and tl, 1  l  p, are grid

points in T at which observations are recorded. Starting from such discrete and possibly

noisy data, there are di↵erent ways of introducing smoothness in the estimation of FPCA.

Rice and Silverman (1991); Silverman (1996); Huang et al. (2008), among others, studied

approaches where a smoothness penalty on eigenfunctions is integrated in the optimization

step of eigen-decomposition. Let S be the p ⇥ p sample covariance matrix of the observed

vector Y , and v be a p dimensional vector. Rice and Silverman (1991) used a roughening

matrix D = �T� where � 2 R(p�2)⇥p is a second-di↵erencing operator:

�ij =

8
>>>><

>>>>:

1, if j 2 {i, i+ 2} ,

�2, if j = i+ 1 ,

0, otherwise .

A smoothed eigenfunction estimator is obtained by solving the following eigen problem:

max vT (S � ⇢1D)v, s.t. kvk2 = 1, (3)

where ⇢1 is a smoothing parameter, and kvk2 is the Euclidean norm of v.

A straightforward approach to localize the estimated eigenfunctions is to add another

localization penalty:

max vT (S � ⇢1D)v � ⇢2kvk1, s.t. kvk2 = 1, (4)

where ⇢2 is a tuning parameter, and kvk1 is the `1 norm of v. However, this is not a convex

problem and there are no known algorithms that can e�ciently find a global optimum even

for the first eigen-component.
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Here we propose a novel sequential estimation procedure based on the idea of estimating

the rank one projection matrix vvT . Let hA,Bi = trace(ATB) for matrices A, B of compat-

ible dimensions. Denote kHk1,1 the matrix `1 norm, which is the sum absolute value of all

entries in H. Starting from b⇧0 = 0, for each j = 1, ..., k, the jth localized eigen-component

is estimated as follows.

Hj = argmaxhS � ⇢1D,Hi � ⇢2kHk1,1, s.t. H 2 Db⇧j�1
,

bvj = the first eigenvector of Hj,

b⇧j = b⇧j�1 + bvjbvTj ,

(5)

where, for any p⇥ p projection matrix ⇧,

D⇧ := {H : 0 � H � I, trace(H) = 1, and hH,⇧i = 0},

and, for symmetric matrices A, B, “A � B” means that B � A is positive semidefinite.

Problem (5) is a convex relaxation of (4) with integrated orthogonality constraints on the

estimated localized eigen-components. With the estimated bvj, we can easily obtain an esti-

mate b�j(t) of the localized eigenfunction �j(t) by standard interpolation techniques such as

linear interpolation, plus an optional final step of re-orthogonalization and re-normalization.

With appropriately chosen tuning parameters, the performance of the proposed method

ties to the maximum entry-wise error of the discretized covariance estimator S (see Section 4

for details). Our presentation will focus on a sample covariance S that is computed from

dense and equally spaced observations, but the proposed method is not restricted to a dense

regular design as long as a reasonable covariance estimate can be obtained. More discussions

can be found in Section 7.

To solve for bvj and b�j(t), the key step in (5) is to solve

max
H

hS � ⇢1D,Hi � ⇢2kHk1,1, s.t. H 2 D⇧, (6)

where ⇧ = b⇧j�1 at step j. In next section we present an algorithm that solves problem (6),

with a discussion on the choice of tuning parameters ⇢1 and ⇢2.
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In the sparse PCA literature, d’Aspremont et al. (2007); Vu et al. (2013) have considered

the following problem,

max
H

hS,Hi � ⇢kHk1,1, s.t. H 2 Fd , (7)

where the convex set Fd := {H : 0 � H � I, trace(H) = d} is called the Fantope of degree

d (Dattorro, 2005), and is the convex hull of all rank d projection matrices. While the convex

relaxation given in (7) allows us to estimate d-dimensional sparse principal subspaces, it does

not lead to a sequence of mutually orthogonal eigenvectors with di↵erent support regions.

To ensure orthogonality among the estimated eigenvectors, we consider D⇧ := {H : H 2

F1, and hH,⇧i = 0}, which we call the deflated Fantope. It can be naturally generalized to

Dd
⇧ := {H : H 2 Fd, and hH,⇧i = 0} to estimate mutually orthogonal principal subspaces.

Such a feasibility deflation technique is quite di↵erent from the commonly suggested matrix

deflation techniques in sequential estimation of eigenvectors (see Mackey (2008) for example).

3. ALGORITHM

3.1 Deflated Fantope Localization using ADMM

The main di�culty in solving problem (6) is the complex interaction between the `1 penalty

and the deflated Fantope constraint. To overcome this di�culty, we write (6) in an equivalent

form to separate the `1 penalty and deflated Fantope constraint:

min
H,Z

ID⇧
(H)� hS � ⇢1D,Hi+ ⇢2kZk1,1 ,

s.t. H � Z = 0 ,

(8)

where ID⇧
is the convex indicator function, which is 1 outside D⇧ and 0 inside D⇧. Problem

(8) is a convex global variable consensus optimization, which can be solved using alternating

direction method of multipliers (ADMM, Boyd et al. (2011)). We describe in Algorithm 1

an ADMM algorithm that solves (8) and hence (6). It extends the FPS algorithm in Vu

et al. (2013) to the deflated Fantope.

The two matrix operators used in the algorithm are defined as follows.
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Algorithm 1 Deflated Fantope Localization using ADMM

Require: S = ST , ⇧, D, ⇢1, ⇢2 � 0, ⌧ > 0, ✏ > 0

Z(0)  0,W (0)  0 . Initialization

repeat r = 1, 2, . . .

H(r)  PD⇧

⇥
Z(r�1) �W (r�1) + (S � ⇢1D)/⌧

⇤
. Deflated Fantope projection

Z(r)  S⇢2/⌧

�
H(r) +W (r�1)

�
. Elementwise soft thresholding

W (r)  W (r�1) +H(r) � Z(r) . Dual variable update

until kH(r) � Z(r)k2F _ ⌧ 2kZ(r) � Z(r�1)k2F  ✏2 . Stopping criterion

return Z(r)

(i) Soft-thresholding operator: for any a > 0,

Sa(x) = sign(x)max(|x|� a, 0) .

(ii) Deflated-Fantope-projection operator: For any p⇥p symmetric matrix A and projection

matrix ⇧,

PD⇧
(A) := arg min

B2D⇧

kA� Bk2F

is the Frobenius norm projection of A onto the deflated Fantope D⇧.

A non-trivial subroutine in Algorithm 1 is to calculate the deflated-Fantope-projection

PD⇧
(A) for a symmetric matrix A. The following lemma gives a close-form characterization

of the deflated-Fantope-projection operator.

Lemma 3.1. Let ⇧ = V V T , where V is a p ⇥ d matrix with orthonormal columns. Let U

be a p⇥ (p� d) matrix that forms an orthogonal complement basis of V . Then

PD⇧
(A) = U

"
p�dX

i=1

�+
i (✓)⌘i⌘

T
i

#
UT ,

where (�i, ⌘i)
p�d
i=1 are eigenvalue-eigenvector pairs of UTAU : UTAU =

Pp�d
i=1 �i⌘i⌘

T
i , and

�+
i (✓) = min(max(�i � ✓, 0), 1), with ✓ chosen such that

Pp�d
i=1 �

+
i (✓) = 1.

The next theorem ensures the convergence of our algorithm to a global optimum of prob-

lem (6). The proofs of Lemma 3.1 and Theorem 3.2 are given in the Online Supplementary
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File.

Theorem 3.2. In Algorithm 1, Z(r) ! H⇤, H(r) ! H⇤ as r ! 1, where H⇤ is a global

optimum of problem (6).

In the proof of Theorem 3.2 we will see that the auxiliary number ⌧ used in Algorithm 1

plays a role that is similar to the step size commonly seen in iterative convex optimization

solvers. The particular choice of ⌧ does not a↵ect the theoretical convergence of the ADMM

algorithm. There are some general guidelines on the practical choice of ⌧ and we refer to

Boyd et al. (2011) for further details.

3.2 Choice of Tuning Parameters

The optimization problem (5) involves two tuning parameters: ⇢1 controls the roughness

of eigenfunctions; and ⇢2 controls the localization of the eigenfunctions. We present a two-

step approach where ⇢1 is chosen first and kept the same for all 1  j  k, and then

⇢2 is determined sequentially for each eigenfunction �j(t) and denoted by ⇢2,j. The two

parameters can be chosen together by straightforward modification but computationally it

would be a bit intensive.

The choice of the smoothing parameter ⇢1 has been discussed in Rice and Silverman

(1991), and they recommended cross-validation or manual selection. In our simulation and

data analysis, we have used V -fold cross-validation. First the data is divided into V folds,

denoted by P1, P2, . . . , PV . Let H(�v)
j (⇢1, ⇢2) be the estimated Hj in (5) using data other

than Pv with tuning parameters ⇢1 and ⇢2. Let Sv be the discrete covariance estimated

from data Pv. The smoothing parameter is chosen by maximizing the cross-validated inner

product of H(�v)
1 and Sv:

b⇢1 =argmax
⇢2A1

VX

v=1

hH(�v)
1 (⇢, 0), Svi, (9)

where A1 is a candidate set of ⇢1 and empirically we found that a sequence between 0 and

p times the largest eigenvalue of S works well.
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In the following, we present two methods for the choice of ⇢2 given a pre-chosen smoothing

parameter ⇢⇤1. The first method is to choose ⇢2,j by maximizing the cross-validated inner

product of H(�v)
j and Sv:

b⇢2,j =argmax
⇢2A2,j

VX

v=1

hH(�v)
j (⇢⇤1, ⇢), S

vi , j = 1, 2, ..., k , (10)

where A2,j is a candidate set for ⇢2,j, and we propose to use a sequence between 0 and the

95% quantile of absolute values of o↵-diagonal entries in Sj, with Sj = (I� b⇧j�1)S(I� b⇧j�1).

The V -fold cross-validation approach is expected to give a b⇢2 that indicates the true

localization level of the eigenfunctions. The criterion in our proposed cross-validation cor-

responds to maximizing h⌃, bH(⇢2)i, where ⌃ is the discretized population covariance and

is substituted by the test sample covariance in practice. When the true eigenvector v is

localized, h⌃, bH(⇢2)i shall be maximized at approximately the value of ⇢⇤2 which corresponds

to the ideal localization level of the eigenfunction, i.e., k bH(⇢⇤2)k1,1 ⇡ kvvTk1,1. We shall

expect h⌃, bH(⇢2)i as a function of ⇢2 to be (i) monotonically increasing on [0, ⇢⇤2] as the

search area gradually expands to cover the true eigenvector, and (ii) monotonically decreas-

ing on [⇢⇤2,1) as the search area goes unnecessarily larger so that the estimation becomes

more noisy. When the true eigenvector v is not localized, then we shall expect h⌃, bH(⇢2)i

to be monotonically decreasing as ⇢2 increases. The numerical study confirms the good

performance of the cross-validation method. See Section 5 for more details.

In some applications, we may not want to target the standard eigenfunction, but instead

we may want to find orthogonal linear expansions that balance the interpretability (local-

ization) and the capability of explaining the variance of the process. We therefore propose a

second method of choosing ⇢2, which is based on the notion of fraction of variance explained

(FVE). For a p-dimensional vector v of unit length and a sup-norm consistent estimator S

of the covariance operator,

FV E(v) = vTSv/totV (S), (11)

where totV (S) is the sum of positive eigenvalues of S. We note that for dense and equally

spaced observations with measurement error, the FV E(v) defined above is not directly ap-

10



plicable to a sample covariance S because the sample covariance is sup-norm consistent up

to a shift �2 on the diagonal, where �2 is the error variance. To avoid serious bias by the

nugget e↵ect on the diagonal, one may use the eigenvalues from the smoothed covariance.

Another practical way is to approximate totV (S) by the sum of the first M leading eigen-

values of S, for a finite number M . For a reasonable error level, the nugget e↵ect bias M�2

is small compared to the sum of the first M eigenvalues of S, which is of order p (Kneip

et al., 2011), while the remaining true eigenvalues beyond M are usually very small because

the smoothness of X(t) ensures fast decay of eigenvalues. In numerical experiments where

FV E is needed for determining the number of principal components to be included, we use

M = min(20, p� 2).

To sequentially select the sparsity parameter ⇢2 for the jth eigenfunction. Suppose that

we have estimated bvi for 1  i  j�1. Let bvj(⇢⇤1, ⇢) be the solution of (5) by using a fixed ⇢⇤1

and ⇢2 = ⇢, with b⇧j�1 being the projector of the subspace spanned by (bvi : 1  i  j � 1).

We can define

rFV E(⇢) =
FV E(bvj(⇢⇤1, ⇢))
FV E(bvj(⇢⇤1, 0))

=
bvTj (⇢⇤1, ⇢)Sbvj(⇢⇤1, ⇢)
bvTj (⇢⇤1, 0)Sbvj(⇢⇤1, 0)

, (12)

and choose ⇢2,j as

max{⇢ 2 A2,j : rFV E(⇢) � 1� a}, (13)

where a 2 [0, 1) is the proportion of FVE that one chooses to sacrifice in return of localization.

For any a 2 [0, 1), a ⇢ satisfying (13) always exists, because rFV E(⇢) = 1 for ⇢ = 0 and

rFV E(⇢) 2 [0, 1) for ⇢ > 0. Equation (12) also suggests that rFV E(⇢) can be calculated

without computing totV (S). Although the first localized basis function explains less variance

than the standard eigenfunction, the lost proportion is likely to be picked up by the second

component, and we are still able to explain a large proportion of the total variance with a

small number of components. We illustrate this method with real data analyses in Section

6.
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4. ASYMPTOTIC PROPERTIES

In this section we establish the `2 consistency of the proposed estimator in an asymptotic

setting where both the sample size n and the number of grid points p increase. We will

first provide su�cient conditions on the tuning parameters ⇢1 and ⇢2 such that the LFPCA

estimate is consistent. Our second result provides further insights on how the localization

penalty ⇢2 a↵ects the rate of convergence. We make the following assumptions.

A1. The input matrix S in (5) satisfies sup-norm consistency up to a constant shift on the

diagonal: for some constant ↵ � 0 and a sequence en = o(1),

max
1l,l0p

|S(l, l0)� �(tl, tl0)� ↵1(l = l0)| = OP (en) , as (n, p) ! 1 .

Remark: Assumption (A1) puts a mild condition on the input matrix S that can be

satisfied by many standard estimators. Consider functional data with dense and equally

spaced observations. If S is the sample covariance estimator from the raw data, standard

large deviation bounds such as Bernstein’s inequality (Van Der Vaart and Wellner (1996),

Chapter II) imply that Assumption (A1) holds with en =
p

log p/n if log p/n ! 0 and the

random curve X(t) as well as the observation error in model (2) has sub-Gaussian tails; see

also Kneip et al. (2011). In this case ↵ = �2, the noise variance. If a smoothed covariance

estimator S is used, the sup-norm rate can be
p

log n/n (Li et al., 2010). The convergence

in other norms such as Frobenius norm can be found in (Hall and Hosseini-Nasab, 2006;

Hall et al., 2006; Bunea and Xiao, 2015). In general, the consistency result does not really

depend on the observational design as long as we can get an estimate of the covariance

operator whose sup-norm error vanishes as n and p increase. More discussions about cases

where a sample covariance is not feasible can be found in Section 7.

A2. There is a positive integer k such that the eigenvalues of � satisfies �1 >, . . . , > �k >

�k+1 �, . . . ,� 0, with positive eigen-gap � := min1jk(�j � �j+1) > 0.

A3. � is Lipschitz continuous:

|�(s, t)� �(s0, t0)|  Lmax(|s� s0|, |t� t0|) , 8 s, s0, t, t0 .
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A4. The k leading eigenfunctions of � have Lipschitz first derivatives:

|�0
j(t)� �0

j(s)|  L|t� s| , 8 1  j  k .

Theorem 4.1 (`2 consistency). Under assumptions (A1-A4), if ⇢1/p5 ! 0 and ⇢2 ! 0 as

(n, p) ! 1, then for k as defined in A2, we have

sup
1jk

kb�j(t)� �j(t)k2
P! 0 .

The proof of Theorem 4.1 is given in the Online Supplementary File. Here we outline

the proof, highlighting some key technical challenges.

Let uj be the unit vector obtained by discretizing and re-normalizing the eigenfunction

�j(t). We will prove Theorem 4.1 by proving

sup
1jk

kbvj � ujk2
P! 0.

Let ⌃ be the discretized covariance operator, with a possible constant shift a on the

diagonal. Roughly speaking, bvj and uj approximate the jth eigenvector of S and ⌃, respec-

tively. We hope to establish the following inequality based on the standard Davis-Kahan

sin⇥ theorem (Bhatia (1997), Theorem VII.3.1),

kbvjbvTj � uju
T
j kF  c

�p
kS � ⌃kF  c

�
kS � ⌃k1,1 , (14)

provided that S and ⌃ have eigengap of order �p (Lemma C.2), where kAkF = hA,Ai1/2 is

the Frobenius norm and kAk1,1 is the maximum absolute value of all entries in A.

However, to rigorously obtain an approximated version of (14) is non-trivial. First, uj

is not an eigenvector of ⌃ because of the discretization error. The discretization error will

be explicitly tracked in all subsequent analysis when comparing uj with bvj, for example, in

the characterization of population PCA problem (Lemma C.4). Second, bvj is obtained by

solving a penalized eigenvector problem over the deflated Fantope, and hence is not directly

comparable to its ideal theoretical counterpart uj, which may not be in the feasible set of

problem (5). To overcome this di�culty, we will consider a modified version of uj that
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is feasible for (5) but still possesses similar smoothness as well as proximity to the true

eigenvector of ⌃. Furthermore, the sequential estimation procedure (5) involves deflation

based on estimated projection matrix b⇧j�1, which carries over estimation error from previous

steps. We will use an induction argument to control the sequential error accumulation.

Due to the sequential error accumulation, the convergence rate involves ⇢1 and ⇢2 in

a complex way. To provide insights for our localized estimation procedure, the following

theorem shows how the rate of convergence depends on ⇢2 when the smoothing parameter

⇢1 = 0. The proof is included in the Online Supplementary File.

Theorem 4.2 (Rate of convergence). Under assumptions (A1-A4), if ⇢1 = 0 and ⇢2 ! 0 as

(n, p) ! 1, then for k as defined in A2, we have

sup
1jk

kb�j(t)� �j(t)k2 = OP (en + ⇢2 + p�1) .

The three parts in the rate of convergence correspond to covariance estimation error,

bias caused by localization penalty, and discretization error, respectively. According to the

discussion after Assumption A1, the sup-norm covariance estimation error en can be made as

small as
p

log p/n or
p

log n/n depending on the estimating method used and observation

scheme. Thus if p grows at the same or higher order than
p
n, and ⇢2 = O(en), our LFPCA

estimate achieves an error rate of en within a logarithm factor from the standard FPCA

error rate.

5. NUMERICAL STUDY

To illustrate our methods for localized functional principal component analysis, we conduct

simulations under two scenarios, Simulation I: localized case and Simulations II: non-localized

case. For Simulation I, data {Yil, i = 1, . . . , n, l = 1, . . . , p} are generated according to model

(2), where tl are equally spaced observational points on [0, 1]. We set µ(t) = 0, ⇠ij ⇠ N(0,�j),

independent, with �j taken from (42, 32, 2.52, 1.252, 1, 0.752, 0.52, 0.252) and �j = 0 for

j > 8, and the measurement errors ✏il
iid⇠ N(0, �2). We generate the eigenfunctions as follows.

Let e�1(t) = B3(t), e�2(t) = B6(t) and e�3(t) = B9(t), where Bb(t) is the bth cubic B-spline basis
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Figure 1: True (blue-solid) and estimated (red-dashed) eigenfunctions �j(t), j = 1, 2, 3, in

one run of Simulation I, with n = 100, p = 100 and � = 1, by four di↵erent methods as

described in Section 5. Tuning parameters are chosen by 5-fold cross-validation.

on [0, 1], with 8 equally spaced interior knots. For j > 3, e�j(t) =
p
2 cos((j + 1)⇡t) for odd

values of j and e�j(t) =
p
2 sin(j⇡t) for even values of j, 0  t  1. Then �j(t), 1  j  8, are

obtained by applying Gram-Schmidt orthonormalization on the set of e�j(t), 1  j  8. For

Simulation II, we use �j(t) =
p
2 cos((j + 1)⇡t) for odd values of j and �j(t) =

p
2 sin(j⇡t)

for even values of j, 0  t  1, for 1  j  8. The rest is the same as simulation I.

We investigate the performance of the proposed LFPCA under varying combinations of

sample size n, number of observations per curve p, and noise level �2. More importantly, we

compare the estimates given by four di↵erent methods (i) (⇢1, ⇢2) = (0, 0) corresponds to the

ordinary PCA estimation directly obtained from the sample covariance; (ii) (⇢1, ⇢2) = (b⇢1, 0)

corresponds to the smoothed eigenfunction estimation without localization, where b⇢1 was

chosen by 5-fold cross-validation as discussed in Section 3.2. Empirically, we found these

estimated eigenfunctions almost identical to those estimated from a smoothed covariance
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Figure 2: Noisy observations and recovered functions bXi(t) (red-solid) for nine randomly

selected subjects, as obtained in one run of simulation I with n = 100, p = 100 and � = 1,

using (b⇢1, b⇢2) chosen by 5-fold cross-validation.

function or pre-smoothed individual curves; (iii) NonSeq corresponds to the subspace method

developed in Vu et al. (2013). For comparison purpose, we incorporate the roughening

matrix, i.e., use S�⇢1D as input matrix in (7) with b⇢1 chosen by 5-fold cross-validation, the

same as used in (ii) and (iv). The sparse tuning parameter is chosen by 5-fold cross validation

e⇢2 = argmax⇢2A2

PV
v=1hH(�v)(⇢1, ⇢), Svi. We also note that their proposed method only

outputs k basis vectors of the k-dimensional subspace, and one needs to rotate that basis to

obtain eigenvectors. (iv) (⇢1, ⇢2) = (b⇢1, b⇢2) corresponds to the proposed LFPCA with tuning

parameters selected by 5-fold cross-validation as detailed in (9) and (10). Each setting is

repeated 200 times to assess the average performance. The number of included components

k is chosen to account for at least 85% of the total variance, i.e.
Pk

j=1 FV E(bvj) � 85%,

where FVE is defined in (11). The selected number of k is quite robust among all simulation

settings, and the average number over 200 simulations is 3.01.

The estimated eigenfunctions �j(t), j = 1, 2, 3, from a typical run of Simulation I with

p = 100, n = 100, and � = 1 are visualized in Figure 1. The four columns correspond to
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Figure 3: Performance of the 5-fold cross-validation to choose ⇢2 for �1. The top panel

is for Simulation I: localized case: The peak of the cross-validated inner product hH,Si
(dashed curve, left y label) corresponds to b⇢2 = 3.8. The estimated �1 is more localized as ⇢2
increases, and an ideal ⇢2 is where the k·k1,1 of estimated H (solid curve, right y label) meets

that of true discretized projection matrix corresponding to �1 (indicated by the horizontal

line). The bottom panel is for Simulation II: non-localized case: b⇢2 = 1.2.

results given by the four methods described above. One can clearly see the improvement

by adding smoothing and localization penalties. The 5-fold cross-validation choice (b⇢1, b⇢2)

leads to almost perfect recovery of the true eigenfunctions. The fitted curves bXi(t) = bµ(t) +
Pk

j=1
b⇠ij b�j(t) for nine randomly chosen subjects are shown in Figure 2, where b�j(t) are

obtained using (b⇢1, b⇢2). It demonstrates accurate recovery of the true curves Xi(t).

To better quantify the performance of estimating �j(t) we report the `2 distance k�j(t)�
b�j(t)k2. The medians of the errors over 200 simulation runs are reported in Table 1. The

results are quite similar for di↵erent levels of p and �, so only results for p = 100 and � = 1
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Table 1: Results for simulation: reporting the median of errors (k�j� b�jk2) for �j, j = 1, 2, 3,

(with median absolute deviations in parentheses) over 200 simulation runs, with � = 1,

p = 100, and varying sample sizes n, where NonSeq is the subspace method developed in Vu

et al. (2013).

Simulation I: Localized Simulation II: Non-localized

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

(0, 0) 0.22 (0.09) 0.18 (0.06) 0.13 (0.04) 0.22 (0.08) 0.15 (0.05) 0.12 (0.04)

�1 (b⇢1, 0) 0.22 (0.09) 0.18 (0.07) 0.13 (0.04) 0.21 (0.08) 0.15 (0.06) 0.11 (0.04)

NonSeq 0.22 (0.09) 0.18 (0.07) 0.13 (0.04) 0.21 (0.08) 0.15 (0.06) 0.11 (0.03)

(b⇢1, b⇢2) 0.12 (0.05) 0.10 (0.03) 0.06 (0.02) 0.22 (0.08) 0.15 (0.05) 0.13 (0.03)

(0, 0) 0.42 (0.16) 0.30 (0.13) 0.20 (0.07) 0.42 (0.16) 0.29 (0.12) 0.19 (0.07)

�2 (b⇢1, 0) 0.41 (0.16) 0.30 (0.13) 0.20 (0.07) 0.41 (0.15) 0.28 (0.11) 0.19 (0.06)

NonSeq 0.40 (0.16) 0.30 (0.12) 0.20 (0.07) 0.41 (0.15) 0.28 (0.11) 0.19 (0.07)

(b⇢1, b⇢2) 0.26 (0.17) 0.14 (0.07) 0.11 (0.05) 0.41 (0.17) 0.28 (0.11) 0.20 (0.07)

(0, 0) 0.37 (0.12) 0.27 (0.11) 0.18 (0.07) 0.31 (0.10) 0.26 (0.09) 0.18 (0.06)

�3 (b⇢1, 0) 0.36 (0.12) 0.27 (0.11) 0.18 (0.08) 0.30 (0.10) 0.26 (0.09) 0.17 (0.06)

NonSeq 0.33 (0.14) 0.27 (0.11) 0.18 (0.07) 0.30 (0.10) 0.26 (0.09) 0.18 (0.06)

(b⇢1, b⇢2) 0.24 (0.15) 0.14 (0.08) 0.09 (0.04) 0.31 (0.11) 0.26 (0.09) 0.18 (0.06)

are reported with various sample size n. The errors are found to decline with increasing

sample size n, as expected. For Simulation I: localized case, the proposed LFPCA with b⇢2

chosen by cross-validation significantly outperforms other methods. The b⇢2 chosen by cross-

validation well approximates the true localization level of the eigenfunctions; see Figure 3

for an illustration and detailed discussions can be found in section 3.2. The NonSeq, a

subspace method proposed by Vu et al. (2013), does not perform well since the union of

the subdomains under consideration is the entire domain, not ‘sparse’ at all in their setting.

The results demonstrate the advantage of our proposed sequential method. For Simulation

II: non-localized case, 5-fold cross-validation method combined with the proposed LFPCA

choose b⇢2j to be very close to 0, and as expected, the `2 errors of the four methods are almost

identical.
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Figure 4: Top Row: Estimated eigenfunctions for the mortality data, b⇢1 is chosen by 5-

fold cross validation; Bottom Row: Estimated orthogonal basis functions, b⇢2 is chosen to

maintain rFVE at 70% in (12), and the number of components k = 3 is chosen to explain at

least 85% of the total variance.

6. APPLICATION TO COUNTRY MORTALITY DATA

The analysis of human mortality is important in assessing the future demographic prospects

of societies, and quantifying di↵erences between countries with regard to the overall public

health measure. Functional data analysis approaches have been previously applied to study

mortality data (Hyndman et al., 2007; Chiou and Müller, 2009; Chen and Müller, 2012). To

study the variational modes of mortality rates across countries over years, we applied the

proposed LFPCA method to period life tables for 27 countries, with rates of mortality at age

60 available for each of the calendar years from 1960 to 2006. The data were obtained from

the Human Mortality Database (downloaded on March 1, 2011), maintained by University of

California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany).

The data is available at www.mortality.org or www.humanmortality.de, with detailed

description in Wilmoth et al. (2007).
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Let Xi(t) denote the mortality rate in the ith country for subjects at age 60 during

calendar year t, where 1960  t  2006. We directly compute the sample covariance

matrix S from the observed data and apply the proposed algorithm to solve problem (5).

The b⇢1 chosen by 5-fold cross-validation (9) is always used to ensure a relatively smooth

estimate of the eigenfunction, and the solution path along di↵erent levels of localization is

investigated. The 5-fold cross-validation method gave b⇢2 = 0, indicating the eigenfunctions

are not exactly localized. The estimated eigenfunctions without localization penalty are

given in the top row of Figure 4. We then choose b⇢2 by the second method as defined in

(13) with a = 30%. The estimated localized basis functions, as visualized in the bottom

row of Figure 4, reveal several interesting features. The first localized basis function �1(t),

explaining 54% of the total variance, indicates that a big variation of the mortality functions

Xi(t) around their mean function happens around mid 1990s. The second basis function

�2(t) with a mode around 1980s accounts for 21.2% of the total variation. The third basis

function �3(t) characterizes variation of mortality around 1960s. Although the first localized

basis function explains less variance than the first leading eigenfunction, only retaining 70%

of the capability in return of localization, the lost proportion is picked up by the second

component. The second component could have explained 30.3% of the variance without

localization. Therefore, we only need three localized eigenfunctions to account for more

than 85% of the total variance. Plots of estimated eigenvalues using other values of a are

provided in the Online Supplementary File.

7. DISCUSSION

In this paper, we propose a localized functional principal component analysis through a De-

flated Fantope Localization method, where sequentially obtained eigenfunctions have guar-

anteed orthogonality and are allowed to be supported on di↵erent localized subdomains. As

mentioned in Section 2, the deflated Fantope D⇧ can easily be generalized to a d-dimensional

version Dd
⇧. In some applications, one might be interested to estimate mutually orthogonal

principal subspaces with dimensions d1, . . . , dk, and each principal subspace is only supported
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on a subdomain Tj ⇢ T .

Throughout the paper, we mainly focus on a dense and regular functional data design

where p equally spaced observations are recorded on each curve. Most commonly seen

functional data have this design and a sample covariance can be easily computed from

the discrete and possibly noisy observations. Our proposed formula (5) takes the sample

covariance S and outputs smooth and localized estimates of eigenfunctions. In fact the

proposed method puts rather minimal requirement on the input matrix S and does not rely on

the design of observations. Consider the discretized version of � by evaluating on p⇥p equally

spaced grid points. The estimation error of the eigenfunctions directly ties to the maximum

entry-wise error of the input matrix S. Here we briefly discuss several scenarios where a

sample covariance is not feasible. (i) For dense but irregularly observed functional data, one

can simply smooth each curve (Ramsay and Silverman, 2005) or interpolate between points

to get p equally spaced observations, and then a p⇥p covariance estimate S can be computed.

This is what we have done for the Berkeley growth data given in the Online Supplementary

File. (ii) For sparse functional data where the observations are recorded at random and sparse

time points, individual smoothing or interpolation is impossible. But a uniformly consistent

covariance estimation is possible by, for example, two-dimensional smoothing methods (Yao

et al., 2005; Li et al., 2010). Our proposed LFPCA can then be applied by taking S as the

discretized version of the smooth covariance estimator. (iii) For ultra dense and noisy data,

the independent measurement errors accumulate if one uses sample covariance computed

from the raw measurements. Moreover, using a large p ⇥ p matrix is not computationally

e�cient. We recommend performing pre-smoothing or pre-binning on individual curves and

choosing a grid with a moderate size p.

We proposed two methods of choosing the localization parameter ⇢2. When the cross-

validation method chooses ⇢2 = 0, it roughly means that the true eigenfunctions are not

localized. Then for a fixed number of a, we find a set of orthogonal basis functions that

retain the ability to explain a fair amount of variance (at least a (1� a) proportion) and are

localized. In this case, the outcome would depend on the choice of a and they should not

21



be interpreted as the true eigenfunctions. Rather, these localized basis functions and the

corresponding projection scores have ready interpretation with domain knowledge.
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Gasser, T., Müller, H.-G., Köhler, W., Prader, A., Largo, R., and Molinari, L. (1985), “An

analysis of the mid-growth and adolescent spurts of height based on acceleration,” Annals

of Human Biology, 12, 129–148.

Hall, P. and Hosseini-Nasab, M. (2006), “On properties of functional principal components

analysis,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68,

22



109–126.

Hall, P., Müller, H.-G., and Wang, J.-L. (2006), “Properties of principal component methods

for functional and longitudinal data analysis,” The Annals of Statistics, 1493–1517.

Huang, J. Z., Shen, H., Buja, A., et al. (2008), “Functional principal components analysis

via penalized rank one approximation,” Electronic Journal of Statistics, 2, 678–695.

Hyndman, R. J., Ullah, S., et al. (2007), “Robust forecasting of mortality and fertility rates:

a functional data approach,” Computational Statistics & Data Analysis, 51, 4942–4956.

James, G. M., Wang, J., and Zhu, J. (2009), “Functional linear regression that’s inter-

pretable,” The Annals of Statistics, 2083–2108.

Kneip, A., Sarda, P., et al. (2011), “Factor models and variable selection in high-dimensional

regression analysis,” The Annals of Statistics, 39, 2410–2447.

Lei, J. and Vu, V. Q. (2015), “Sparsistency and Agnostic Inference in Sparse PCA,” The

Annals of Statistics, to appear.

Li, Y., Hsing, T., et al. (2010), “Uniform convergence rates for nonparametric regression and

principal component analysis in functional/longitudinal data,” The Annals of Statistics,

38, 3321–3351.

Lin, Z. (2013), “Some perspectives of smooth and locally sparse estimators,” Master thesis,

Simon Fraser University, Canada.

Mackey, L. (2008), “Deflation Methods for Sparse PCA,” in NIPS, vol. 21, pp. 1017–1024.
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