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Abstract

We propose localized functional principal component analysis (LFPCA), looking for orthog-
onal basis functions with localized support regions that explain most of the variability of
a random process. The LFPCA is formulated as a convex optimization problem through
a novel Deflated Fantope Localization method and is implemented through an efficient al-
gorithm to obtain the global optimum. We prove that the proposed LFPCA converges to
the original FPCA when the tuning parameters are chosen appropriately. Simulation shows
that the proposed LFPCA with tuning parameters chosen by cross validation can almost
perfectly recover the true eigenfunctions and significantly improve the estimation accuracy
when the eigenfunctions are truly supported on some subdomains. In the scenario that the
original eigenfunctions are not localized, the proposed LFPCA also serves as a nice tool in
finding orthogonal basis functions that balance between interpretability and the capability of
explaining variability of the data. The analyses of a country mortality data reveal interesting
features that cannot be found by standard FPCA methods.
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1. INTRODUCTION

Functional principal component analysis has emerged as a major tool to explore the source
of variability in a sample of random curves and has found wide applications in functional
regression, curve classification, and clustering (Castro et al., 1986; Rice and Silverman, 1991;
Cardot, 2000; Yao et al., 2005; Ramsay and Silverman, 2005; Hall and Hosseini-Nasab, 2006).
In this paper, we consider functional principal component analysis with localized support
regions. That is, for a smooth random function X, we look for orthogonal basis functions
with localized support regions that explain most of the variance. The main motivation of the
localized functional principal component analysis (LFPCA) is to find a parsimonious linear
representation of the data that balances the interpretability and the capability of explaining
variance of the stochastic process.

The proposed method outputs localized basis functions whose localization level is con-
trolled by a localization tuning parameter. We propose two methods to select the localiza-
tion parameter, corresponding to two useful applications of our proposed method. First, one
can choose the localization parameter by maximizing the explained variance of the random
process computed by V-fold cross-validation. Our simulation shows that when the eigen-
functions truly have localized support regions, the proposed LFPCA with a localization
parameter chosen by cross-validation significantly improves the estimation accuracy of the
eigenfunctions compared to standard FPCA methods. On the other hand, when the origi-
nal eigenfunctions are not localized, the localization parameter chosen by cross-validation is
expected to be very close to zero and it is confirmed by our numerical studies that the perfor-
mance of the proposed LFPCA is almost identical to standard FPCA methods. The second
method of choosing the localization parameter is to seek the most localized basis functions
that explain a fixed level of variance. This method is particularly useful when the standard
eigenfunctions are not localized, and it makes sense for the proposed LEFPCA not to target
at the standard eigenfunctions but to balance between interpretability and the capability

of explaining variance of the stochastic process. Details can be found in Section 3.2. We



consider a a country mortality data application to illustrate the second method of choosing
the localization parameter. In the country mortality data, the mortality rates at age 60 were
recorded from year 1960-2006 for 27 countries around the world. The first three localized
basis functions, explaining more than 85% variance, correspond to variational modes around
mid 1990s, 1980s, and 1960s, respectively. Another example concerning a growth curve
data is presented in the Online Supplementary File. The first two localized basis functions
explain more than 85% variance, and clearly indicate that the main variational modes of
female height growth are around age 12 and around age 5, perfectly matching the knowledge
of growth spurts. These interesting features cannot be revealed by standard FPCA.
Domain localization has been studied by several authors in the functional regression
model: E(Y|X) = a+ [ X (t)3(t)dt, where the coefficient function §(t) is desired to be zero
outside a subdomain 7y € 7 with the purpose of improved interpretability (James et al.,
2009; Zhao et al., 2012; Zhou et al., 2013). Most of these methods turn the problem into a
variable selection problem and use LASSO type penalties. In a recent thesis work Lin (2013),
interpretable functional principal component analysis is studied, which has a very similar
flavor as our proposed LFPCA. In their work, an ¢, penalty is added on eigenfunctions and
a greedy algorithm based on basis expansion of curves is developed to solve the non-convex
optimization problem. The formulation of localization or domain selection in the context
of functional principal component analysis is quite challenging for at least two reasons.
First, the eigen problem together with a localization penalty is usually not convex, and in
general it is an NP-hard problem to find a global optimum. Second, in order to obtain a
sequence of mutually orthogonal eigen-components, a commonly taken procedure is to deflate
the empirical covariance operator at step j by removing the effect of the previous j — 1
components (White, 1958; Mackey, 2008). But with the localization penalty in the objective
function, this procedure can not guarantee the orthogonality of such sequentially obtained
eigen-components. In sequential estimation of principal components, being orthogonal to the
first component is a natural requirement when looking for the second component, otherwise

the maximization over second direction is not well-defined since the solution would still



be the first direction. From a dimension reduction perspective, the orthogonality is also
appealing since the resulting k£ dimensional orthogonal basis leads to very simple calculation
for subsequent inferences.

The main contribution of this paper is three-fold. First, we formulate the LFPCA
as a convex optimization problem with explicit constraint on the orthogonality of eigen-
components. Second, we provide an efficient algorithm to obtain the global maximum of this
convex problem. Third, we carefully investigate the estimation error from the discretized data
version to the functional continuous version, as well as the complex interaction between the
eigen problem and the localization penalty, and prove consistency of the estimated eigenfunc-
tions. The starting point of our method is a sup-norm consistent estimator of the covariance
operator, up to a constant shift on the diagonal. For dense and equally spaced observations
with or without measurement error, the proposed method can be directly carried out on
the sample covariance, i.e., without the need to perform basis expansion, smoothing of the
individual curves, or smoothing of the estimated covariance operator. For other designs
of functional data, the proposed method is still applicable when an appropriate covariance
estimator is available.

Our formulation of LFPCA borrows ideas from recent developments in sparse principal
component analysis. In Vu et al. (2013); Lei and Vu (2015), a similar convex framework
based on Fantope Projection and Selection has been proposed to estimate a k& dimensional
sparse principal subspace of a high dimensional random vector (see also d’Aspremont et al.
(2007) for k = 1). These sparse subspace methods are useful when the union of the support
regions of several leading eigenvectors is sparse. In sparse PCA settings, the notion of
sparsity requires the proportion of non-zero entries in the leading eigenvectors to vanish as
the dimensionality increases and therefore it makes sense to consider the union of the support
regions of several leading eigenvectors to be sparse. However, in functional data settings, the
length ratio of a support subdomain over the entire domain is determined by the random
curve model and usually a constant, and the union of several leading subdomains can be as

large as the entire domain. This is also the reason that we use the notion “localized” instead



of “sparse”. It has remained challenging to obtain sparse eigenvectors sequentially that each
one is allowed to have a different support region. A particular challenge is the interaction
between orthogonality and the sparse penalty. Besides the difference between functional
PCA and sparse PCA, one main extension developed in our method is the construction
of a deflated Fantope to estimate individual eigen-components sequentially, with possibly
different support regions and guaranteed orthogonality. This deflated Fantope formulation
is of independent interest in many other structured principal component analysis.

The rest of this paper is organized as follows. In section 2, we introduce the formulation
of localized functional principal component analysis. Section 3 derives the solution to the
optimization problem and describes the algorithm as well as the selection of tuning param-
eters. Section 4 contains the consistency results. Section 5 and Section 6 present numerical
experiments and data examples to illustrate our method. Section 7 contains some discus-
sions and extensions. Technical details and additional materials are provided in the Online

Supplementary File.

2.  LFPCA THROUGH DEFLATED FANTOPE LOCALIZATION
We consider a square integrable random process X (t) : 7 +— R over a compact interval T C
R, with mean and covariance functions u(t) = EX(t) and I'(s,t) = Cov(X(s), X(t)), and
covariance operator (I'f)(t) = [,_ f(s)T'(t, s)ds. Under the minimal assumption that T'(s, ?)
is continuous over (s,t), this operator I' has orthonormal eigenfunctions ¢;(t),j = 1,2,-- -,
with nonincreasing eigenvalues \;, satisfying I'¢; = A;¢;. The well known Karhunen-Loeve

expansion then gives the representation
X(t) = p(t) + Z &id;(t), (1)
j=1

where &, j > 1, is a sequence of uncorrelated random variables satisfying E(¢;) = 0 and
var(§;) = Aj, with an explicit representation &; = [,_(X(t) — u(t))¢;(t)dt. A key inference
task in functional principal component analysis (FPCA) is to estimate the leading eigen-

functions ¢;(t), 1 < j <k, from n independent sample curves.
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In practice, the underlying sample curves X;(t), 1 < i < n, are usually recorded at a
grid of points and may be contaminated with additive measurement errors. We start with
dense and equally spaced observations

o0
Y= Xi(t) +en=plt) + Y &idit)+ea, i=1,...n, I=1,....p,  (2)

j=1
where ¢; are independent noises with mean zero and variance o2, and ¢;, 1 <1 < p, are grid
points in T at which observations are recorded. Starting from such discrete and possibly
noisy data, there are different ways of introducing smoothness in the estimation of FPCA.
Rice and Silverman (1991); Silverman (1996); Huang et al. (2008), among others, studied
approaches where a smoothness penalty on eigenfunctions is integrated in the optimization
step of eigen-decomposition. Let S be the p x p sample covariance matrix of the observed
vector Y, and v be a p dimensional vector. Rice and Silverman (1991) used a roughening

matrix D = ATA where A € RP=2*? is a second-differencing operator:

1, if j € {i,i+ 2},
Ajj=1q =2, ifj=i+1,
0, otherwise .

A smoothed eigenfunction estimator is obtained by solving the following eigen problem:
max v’ (S — p1D)v, s.t. |v], =1, (3)

where p; is a smoothing parameter, and ||v||, is the Euclidean norm of v.
A straightforward approach to localize the estimated eigenfunctions is to add another

localization penalty:
max (S — pDYv — pollull, st [loll, = 1, (4)

where p, is a tuning parameter, and ||v||; is the ¢; norm of v. However, this is not a convex
problem and there are no known algorithms that can efficiently find a global optimum even

for the first eigen-component.



Here we propose a novel sequential estimation procedure based on the idea of estimating
the rank one projection matrix voT. Let (A, B) = trace(AT B) for matrices A, B of compat-
ible dimensions. Denote |[H||, , the matrix ¢; norm, which is the sum absolute value of all
entries in H. Starting from ﬁo =0, for each j = 1,..., k, the jth localized eigen-component

is estimated as follows.
Hj = argmax(S — p1 D, H) — po| [H||, ;, s:t. H € Dﬁj_l’
v; = the first eigenvector of Hj, (5)
I =1, +3,07,

where, for any p X p projection matrix II,
Dy ={H:0=H =1, trace(H) =1, and (H,II) = 0},

and, for symmetric matrices A, B, “A < B” means that B — A is positive semidefinite.

Problem (5) is a convex relaxation of (4) with integrated orthogonality constraints on the
estimated localized eigen-components. With the estimated v;, we can easily obtain an esti-
mate g/gj (t) of the localized eigenfunction ¢,(t) by standard interpolation techniques such as
linear interpolation, plus an optional final step of re-orthogonalization and re-normalization.

With appropriately chosen tuning parameters, the performance of the proposed method
ties to the maximum entry-wise error of the discretized covariance estimator S (see Section 4
for details). Our presentation will focus on a sample covariance S that is computed from
dense and equally spaced observations, but the proposed method is not restricted to a dense
regular design as long as a reasonable covariance estimate can be obtained. More discussions
can be found in Section 7.

To solve for v; and ggj (1), the key step in (5) is to solve
mI?X<S —mD, H) — P2||H||1,17 s.t. H € Dy, (6)

where II = ﬁj_l at step j. In next section we present an algorithm that solves problem (6),

with a discussion on the choice of tuning parameters p; and p,.



In the sparse PCA literature, d’Aspremont et al. (2007); Vu et al. (2013) have considered

the following problem,
m}?X(S, H) —pl|H|,,, st. H € F (7)

where the convex set F¢:= {H :0 < H < I, trace(H) = d} is called the Fantope of degree
d (Dattorro, 2005), and is the convex hull of all rank d projection matrices. While the convex
relaxation given in (7) allows us to estimate d-dimensional sparse principal subspaces, it does
not lead to a sequence of mutually orthogonal eigenvectors with different support regions.
To ensure orthogonality among the estimated eigenvectors, we consider Dy .= {H : H €
F1, and (H,II) = 0}, which we call the deflated Fantope. It can be naturally generalized to
D¢ :={H:H e F? and (H,II) = 0} to estimate mutually orthogonal principal subspaces.
Such a feasibility deflation technique is quite different from the commonly suggested matrix

deflation techniques in sequential estimation of eigenvectors (see Mackey (2008) for example).

3.  ALGORITHM
3.1 Deflated Fantope Localization using ADMM

The main difficulty in solving problem (6) is the complex interaction between the ¢; penalty
and the deflated Fantope constraint. To overcome this difficulty, we write (6) in an equivalent

form to separate the ¢; penalty and deflated Fantope constraint:

win Ip, (H) = (S — oD, H) + pal| 2]l
(8)
st. H-Z2=0,
where Ip_ is the convex indicator function, which is co outside Dy and 0 inside Dyy. Problem
(8) is a convex global variable consensus optimization, which can be solved using alternating
direction method of multipliers (ADMM, Boyd et al. (2011)). We describe in Algorithm 1
an ADMM algorithm that solves (8) and hence (6). It extends the FPS algorithm in Vu

et al. (2013) to the deflated Fantope.

The two matrix operators used in the algorithm are defined as follows.



Algorithm 1 Deflated Fantope Localization using ADMM
Require: S = ST, 11, D, p1,ps >0, 7>0,e>0

70— 0, WO 0 > Initialization

repeat r=1,2,...

H™ Po, (2D — W=D 4 (S — py D) /7] > Deflated Fantope projection

AR I (H ) 4 W("*l)) > Elementwise soft thresholding

W — w1 4 g0 — 70 > Dual variable update
until |[H® — ZO|2 v 72| Z20) — Z0-D|2, < ¢ > Stopping criterion
return Z()

(i) Soft-thresholding operator: for any a > 0,
S.(z) = sign(x) max(|z| — a,0).

(ii) Deflated-Fantope-projection operator: For any p X p symmetric matrix A and projection
matrix I,

Pp (A) = arg min ||[A — B|?
o, (A) = arg uin 14 = B}

I1
is the Frobenius norm projection of A onto the deflated Fantope Dy;.

A non-trivial subroutine in Algorithm 1 is to calculate the deflated-Fantope-projection
Pp, (A) for a symmetric matrix A. The following lemma gives a close-form characterization

of the deflated-Fantope-projection operator.

Lemma 3.1. Let Il = VVT, where V is a p x d matriz with orthonormal columns. Let U

be a p X (p — d) matriz that forms an orthogonal complement basis of V.. Then

Z % ()i

where (%,m)f;d are eigenvalue-eigenvector pairs of UTAU: UTAU = Zf:_{j vk, and

77 (#) = min(max(y; — 6,0),1), with § chosen such that Y~ “IyF(6) = 1.

The next theorem ensures the convergence of our algorithm to a global optimum of prob-

lem (6). The proofs of Lemma 3.1 and Theorem 3.2 are given in the Online Supplementary
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File.

Theorem 3.2. In Algorithm 1, Z") — H*, H") — H* as r — oo, where H* is a global

optimum. of problem (6).

In the proof of Theorem 3.2 we will see that the auxiliary number 7 used in Algorithm 1
plays a role that is similar to the step size commonly seen in iterative convex optimization
solvers. The particular choice of 7 does not affect the theoretical convergence of the ADMM
algorithm. There are some general guidelines on the practical choice of 7 and we refer to

Boyd et al. (2011) for further details.

3.2 Choice of Tuning Parameters

The optimization problem (5) involves two tuning parameters: p; controls the roughness
of eigenfunctions; and ps controls the localization of the eigenfunctions. We present a two-
step approach where p; is chosen first and kept the same for all 1 < j < k, and then
p2 is determined sequentially for each eigenfunction ¢;(t) and denoted by p, ;. The two
parameters can be chosen together by straightforward modification but computationally it
would be a bit intensive.

The choice of the smoothing parameter p; has been discussed in Rice and Silverman
(1991), and they recommended cross-validation or manual selection. In our simulation and
data analysis, we have used V-fold cross-validation. First the data is divided into V folds,
denoted by Pi, Po, ..., Py. Let H](-_v)(pl,pg) be the estimated H; in (5) using data other
than P, with tuning parameters p; and ps. Let S” be the discrete covariance estimated
from data P,. The smoothing parameter is chosen by maximizing the cross-validated inner
product of H ™ and Sv:

v

p1 =argmax Y _(H{ (p,0),5"), 9)
pEAL v=1

where A; is a candidate set of p; and empirically we found that a sequence between 0 and

p times the largest eigenvalue of S works well.



In the following, we present two methods for the choice of p, given a pre-chosen smoothing
parameter pj. The first method is to choose p,; by maximizing the cross-validated inner

product of HJ(_U) and SV:

14
prj =argmax Y (H\ "(pi.p), 8", j =12,k (10)

peA2; 1
where A, ; is a candidate set for p, ;, and we propose to use a sequence between 0 and the
95% quantile of absolute values of off-diagonal entries in S, with S; = (I—ﬁj_l)S(I—ﬁj_l).

The V-fold cross-validation approach is expected to give a p, that indicates the true
localization level of the eigenfunctions. The criterion in our proposed cross-validation cor-
responds to maximizing (3, H (p2)), where ¥ is the discretized population covariance and
is substituted by the test sample covariance in practice. When the true eigenvector v is
localized, (3, H(p,)) shall be maximized at approximately the value of pj which corresponds
to the ideal localization level of the eigenfunction, i.e., \|ﬁ(p§)\|11 ~ [lvo"|, ;. We shall
expect (S, H(py)) as a function of py to be (i) monotonically increasing on [0, 3] as the
search area gradually expands to cover the true eigenvector, and (ii) monotonically decreas-
ing on [p}, 00) as the search area goes unnecessarily larger so that the estimation becomes
more noisy. When the true eigenvector v is not localized, then we shall expect (3, H (p2))
to be monotonically decreasing as ps increases. The numerical study confirms the good
performance of the cross-validation method. See Section 5 for more details.

In some applications, we may not want to target the standard eigenfunction, but instead
we may want to find orthogonal linear expansions that balance the interpretability (local-
ization) and the capability of explaining the variance of the process. We therefore propose a
second method of choosing ps, which is based on the notion of fraction of variance explained
(FVE). For a p-dimensional vector v of unit length and a sup-norm consistent estimator S

of the covariance operator,

FVE(v) = vl Sv/totV (S), (11)

where totV(S) is the sum of positive eigenvalues of S. We note that for dense and equally

spaced observations with measurement error, the F'V E(v) defined above is not directly ap-
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plicable to a sample covariance S because the sample covariance is sup-norm consistent up
to a shift o2 on the diagonal, where o is the error variance. To avoid serious bias by the
nugget effect on the diagonal, one may use the eigenvalues from the smoothed covariance.
Another practical way is to approximate totV (S) by the sum of the first M leading eigen-
values of S, for a finite number M. For a reasonable error level, the nugget effect bias Mo?
is small compared to the sum of the first M eigenvalues of S, which is of order p (Kneip
et al., 2011), while the remaining true eigenvalues beyond M are usually very small because
the smoothness of X (¢) ensures fast decay of eigenvalues. In numerical experiments where
FV FE is needed for determining the number of principal components to be included, we use
M = min(20,p — 2).

To sequentially select the sparsity parameter p, for the jth eigenfunction. Suppose that
we have estimated v; for 1 <14 < j—1. Let v;(p}, p) be the solution of (5) by using a fixed pj
and py = p, with ﬁj_l being the projector of the subspace spanned by (v; : 1 <i < j —1).

We can define
_ FVE®;(p;,p)) 9] (07, 0)SU;(p1, p)

rFVE(p) = B e e (12)
FVE(;(p1,0)) 07 (p1,0)57;(p1,0)
and choose py ; as
max{p € Ay ; : rFVE(p) > 1—a}, (13)

where a € [0, 1) is the proportion of FVE that one chooses to sacrifice in return of localization.
For any a € [0,1), a p satisfying (13) always exists, because rF'V E(p) = 1 for p = 0 and
rFVE(p) € [0,1) for p > 0. Equation (12) also suggests that rF'V E(p) can be calculated
without computing totV (S). Although the first localized basis function explains less variance
than the standard eigenfunction, the lost proportion is likely to be picked up by the second
component, and we are still able to explain a large proportion of the total variance with a
small number of components. We illustrate this method with real data analyses in Section

6.
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4.  ASYMPTOTIC PROPERTIES

In this section we establish the /5 consistency of the proposed estimator in an asymptotic
setting where both the sample size n and the number of grid points p increase. We will
first provide sufficient conditions on the tuning parameters p; and ps such that the LFPCA
estimate is consistent. Our second result provides further insights on how the localization
penalty po affects the rate of convergence. We make the following assumptions.

A1. The input matrix S in (5) satisfies sup-norm consistency up to a constant shift on the

diagonal: for some constant o > 0 and a sequence e,, = o(1),

max |S(,I') —T(t;,ty) —al(l=1")|=Op(e,), as (n,p) = co.

1<Ll<p

Remark: Assumption (A1) puts a mild condition on the input matrix S that can be
satisfied by many standard estimators. Consider functional data with dense and equally
spaced observations. If S is the sample covariance estimator from the raw data, standard
large deviation bounds such as Bernstein’s inequality (Van Der Vaart and Wellner (1996),
Chapter IT) imply that Assumption (A1) holds with e, = \/logp/n if logp/n — 0 and the
random curve X (¢) as well as the observation error in model (2) has sub-Gaussian tails; see
also Kneip et al. (2011). In this case o = ¢, the noise variance. If a smoothed covariance
estimator S is used, the sup-norm rate can be \/W (Li et al., 2010). The convergence
in other norms such as Frobenius norm can be found in (Hall and Hosseini-Nasab, 2006;
Hall et al., 2006; Bunea and Xiao, 2015). In general, the consistency result does not really
depend on the observational design as long as we can get an estimate of the covariance
operator whose sup-norm error vanishes as n and p increase. More discussions about cases
where a sample covariance is not feasible can be found in Section 7.

A2. There is a positive integer k such that the eigenvalues of I' satisfies Ay >,..., > A\ >
Ak+1 >, ..., > 0, with positive eigen-gap 0 = min;<;j<x(A; — Aj1) > 0.

A3. T is Lipschitz continuous:

IT(s,t) — (s, )] < Lmax(|s — §|, |t = t'|), Vs,5,¢t1t.

12



A4. The k leading eigenfunctions of I' have Lipschitz first derivatives:

|05(t) = ¢5(s)| < Lt —s|, V1<j<k.

J

Theorem 4.1 (¢, consistency). Under assumptions (A1-A4), if p1/p°> — 0 and ps — 0 as

(n,p) — oo, then for k as defined in A2, we have
~ P
sup [¢;(t) — ¢;(t)]l, = 0.
1<5<k

The proof of Theorem 4.1 is given in the Online Supplementary File. Here we outline
the proof, highlighting some key technical challenges.

Let u; be the unit vector obtained by discretizing and re-normalizing the eigenfunction
¢;(t). We will prove Theorem 4.1 by proving

sup |17 = ull; = 0.

Let X be the discretized covariance operator, with a possible constant shift a on the
diagonal. Roughly speaking, v; and u; approximate the jth eigenvector of S and X, respec-
tively. We hope to establish the following inequality based on the standard Davis-Kahan
sin © theorem (Bhatia (1997), Theorem VIIL.3.1),

(14)

00,00 ?

PPN C C
19,9 — wyujllp < 5—p\|5 — 3l < 55 -2

provided that S and ¥ have eigengap of order dp (Lemma C.2), where ||A]|, = (A4, AV s
the Frobenius norm and ||A||OO,oo is the maximum absolute value of all entries in A.
However, to rigorously obtain an approximated version of (14) is non-trivial. First, u;
is not an eigenvector of ¥ because of the discretization error. The discretization error will
be explicitly tracked in all subsequent analysis when comparing u; with v;, for example, in
the characterization of population PCA problem (Lemma C.4). Second, v; is obtained by
solving a penalized eigenvector problem over the deflated Fantope, and hence is not directly
comparable to its ideal theoretical counterpart u;, which may not be in the feasible set of

problem (5). To overcome this difficulty, we will consider a modified version of u; that
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is feasible for (5) but still possesses similar smoothness as well as proximity to the true
eigenvector of ¥.. Furthermore, the sequential estimation procedure (5) involves deflation
based on estimated projection matrix ﬁj_l, which carries over estimation error from previous
steps. We will use an induction argument to control the sequential error accumulation.
Due to the sequential error accumulation, the convergence rate involves p; and ps in
a complex way. To provide insights for our localized estimation procedure, the following
theorem shows how the rate of convergence depends on ps when the smoothing parameter

p1 = 0. The proof is included in the Online Supplementary File.

Theorem 4.2 (Rate of convergence). Under assumptions (A1-A4), if p1 = 0 and ps — 0 as

(n,p) — oo, then for k as defined in A2, we have

sup [6;(t) = 6;(t)[|, = Op(en +p2+p7").
1<j<k

The three parts in the rate of convergence correspond to covariance estimation error,
bias caused by localization penalty, and discretization error, respectively. According to the
discussion after Assumption A1, the sup-norm covariance estimation error e,, can be made as
small as \/W or \/W depending on the estimating method used and observation
scheme. Thus if p grows at the same or higher order than y/n, and p; = O(e,), our LFPCA
estimate achieves an error rate of e, within a logarithm factor from the standard FPCA

error rate.

5. NUMERICAL STUDY

To illustrate our methods for localized functional principal component analysis, we conduct
simulations under two scenarios, Stmulation I: localized case and Simulations I11: non-localized
case. For Simulation I, data {Y;,i=1,...,n,l =1,... p} are generated according to model
(2), where ¢; are equally spaced observational points on [0, 1]. We set p(t) =0, &; ~ N(0, \;),
independent, with \; taken from (42, 3%, 2.5%, 1.25%, 1, 0.75%, 0.5%, 0.25%) and \; = 0 for
j > 8, and the measurement errors €; 2N (0,0?%). We generate the eigenfunctions as follows.

Let ¢ (t) = Bs(t), ¢o(t) = Bg(t) and ¢3(t) = By(t), where By(t) is the bth cubic B-spline basis

14



(0,0) (p1,0) NonSeq(p1, p2) (p1, p2)

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 08 1

Figure 1: True (blue-solid) and estimated (red-dashed) eigenfunctions ¢;(t), j = 1,2,3, in
one run of Simulation I, with n = 100, p = 100 and ¢ = 1, by four different methods as

described in Section 5. Tuning parameters are chosen by 5-fold cross-validation.

on [0,1], with 8 equally spaced interior knots. For j > 3, ¢;(t) = v/2cos((j + 1)at) for odd
values of j and aj (t) = V2sin(jnt) for even values of j, 0 < ¢ < 1. Then ¢;(t), 1 < j < 8, are
obtained by applying Gram-Schmidt orthonormalization on the set of Ej (t), 1 <j <8. For
Simulation II, we use ¢;(t) = V/2cos((j + 1)mt) for odd values of j and ¢;(t) = v/2sin(jrt)
for even values of j, 0 <t <1, for 1 < 75 < 8. The rest is the same as simulation I.

We investigate the performance of the proposed LFPCA under varying combinations of
sample size n, number of observations per curve p, and noise level o2. More importantly, we
compare the estimates given by four different methods (i) (p1, p2) = (0,0) corresponds to the
ordinary PCA estimation directly obtained from the sample covariance; (ii) (p1, p2) = (p1,0)
corresponds to the smoothed eigenfunction estimation without localization, where p; was
chosen by 5-fold cross-validation as discussed in Section 3.2. Empirically, we found these

estimated eigenfunctions almost identical to those estimated from a smoothed covariance
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Figure 2: Noisy observations and recovered functions )A(Z(t) (red-solid) for nine randomly
selected subjects, as obtained in one run of simulation [ with n = 100, p = 100 and ¢ = 1,

using (p1, p2) chosen by 5-fold cross-validation.

function or pre-smoothed individual curves; (iii) NonSeq corresponds to the subspace method
developed in Vu et al. (2013). For comparison purpose, we incorporate the roughening
matrix, i.e., use S — p; D as input matrix in (7) with p; chosen by 5-fold cross-validation, the
same as used in (ii) and (iv). The sparse tuning parameter is chosen by 5-fold cross validation
P2 = argmax,c 4, SV (HE(py, p),8%). We also note that their proposed method only
outputs k basis vectors of the k-dimensional subspace, and one needs to rotate that basis to
obtain eigenvectors. (iv) (p1, p2) = (p1, p2) corresponds to the proposed LFPCA with tuning
parameters selected by 5-fold cross-validation as detailed in (9) and (10). Each setting is
repeated 200 times to assess the average performance. The number of included components
k is chosen to account for at least 85% of the total variance, i.e. 25:1 FVE(v;) > 8%,
where FVE is defined in (11). The selected number of k is quite robust among all simulation
settings, and the average number over 200 simulations is 3.01.

The estimated eigenfunctions ¢;(t), 7 = 1,2, 3, from a typical run of Simulation I with

p = 100, n = 100, and ¢ = 1 are visualized in Figure 1. The four columns correspond to
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Figure 3: Performance of the 5-fold cross-validation to choose py for ¢;. The top panel
is for Simulation I: localized case: The peak of the cross-validated inner product (H,S)
(dashed curve, left y label) corresponds to ps = 3.8. The estimated ¢; is more localized as p
increases, and an ideal py is where the ||-||; ; of estimated H (solid curve, right y label) meets
that of true discretized projection matrix corresponding to ¢; (indicated by the horizontal

line). The bottom panel is for Simulation II: non-localized case: py = 1.2.

results given by the four methods described above. One can clearly see the improvement
by adding smoothing and localization penalties. The 5-fold cross-validation choice (p1, p2)
leads to almost perfect recovery of the true eigenfunctions. The fitted curves X;(t) = fi(t) +
Z?Zl g;jgb\j (t) for nine randomly chosen subjects are shown in Figure 2, where &Ej(t) are
obtained using (p1, p2). It demonstrates accurate recovery of the true curves X;(t).

To better quantify the performance of estimating ¢,(t) we report the ¢, distance ||¢;(t) —

qgj(t)HQ. The medians of the errors over 200 simulation runs are reported in Table 1. The

results are quite similar for different levels of p and o, so only results for p = 100 and o = 1
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Table 1: Results for simulation: reporting the median of errors (||¢; —%HQ) for ¢;, j =1,2,3,

(with median absolute deviations in parentheses) over 200 simulation runs, with o = 1,

p = 100, and varying sample sizes n, where NonSeq is the subspace method developed in Vu
et al. (2013).

Sitmulation I: Localized Simulation II: Non-localized
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
(0,0) |0.22(0.09) 0.18 (0.06) 0.13 (0.04) 0.22 (0.08) 0.15 (0.05) 0.12 (0.04)
é1 | (p1,0) | 0.22 (0.09) 0.18 (0.07) 0.13 (0.04) 0.21 (0.08) 0.15 (0.06) 0.11 (0.04)
NonSeq | 0.22 (0.09) 0.18 (0.07) 0.13 (0.04) 0.21 (0.08) 0.15 (0.06) 0.11 (0.03)
(p1, p2) | 0.12 (0.05) 0.10 (0.03) 0.06 (0.02) 0.22 (0.08) 0.15 (0.05) 0.13 (0.03)
(0, 0) |0.42 (0.16) 0.30 (0.13) 0.20 (0.07) 0.42 (0.16) 0.29 (0.12) 0.19 (0.07)
o2 | (p1,0) | 041 (0.16) 0.30 (0.13) 0.20 (0.07) 0.41 (0.15) 0.28 (0.11) 0.19 (0.06)
NonSeq | 0.40 (0.16) 0.30 (0.12) 0.20 (0.07) 0.41 (0.15) 0.28 (0.11) 0.19 (0.07)
(p1, p2) | 0.26 (0.17) 0.14 (0.07) 0.11 (0.05) 0.41 (0.17) 0.28 (0.11) 0.20 (0.07)
(0,0) |0.37(0.12) 0.27 (0.11) 0.18 (0.07) 0.31 (0.10) 0.26 (0.09) 0.18 (0.06)
o3 | (p1,0) | 0.36 (0.12) 0.27 (0.11) 0.18 (0.08) 0.30 (0.10) 0.26 (0.09) 0.17 (0.06)
NonSeq | 0.33 (0.14) 0.27 (0.11) 0.18 (0.07) 0.30 (0.10) 0.26 (0.09) 0.18 (0.06)
(p1, p2) | 0.24 (0.15) 0.14 (0.08) 0.09 (0.04) 0.31 (0.11) 0.26 (0.09) 0.18 (0.06)

are reported with various sample size n. The errors are found to decline with increasing

sample size n, as expected. For Simulation I: localized case, the proposed LFPCA with p,

chosen by cross-validation significantly outperforms other methods. The p, chosen by cross-

validation well approximates the true localization level of the eigenfunctions; see Figure 3

for an illustration and detailed discussions can be found in section 3.2. The NonSeq, a

subspace method proposed by Vu et al. (2013), does not perform well since the union of

the subdomains under consideration is the entire domain, not ‘sparse’ at all in their setting.

The results demonstrate the advantage of our proposed sequential method. For Simulation

1I: non-localized case, 5-fold cross-validation method combined with the proposed LFPCA

choose pa; to be very close to 0, and as expected, the {5 errors of the four methods are almost

identical.
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Figure 4: Top Row: Estimated eigenfunctions for the mortality data, p; is chosen by 5-
fold cross validation; Bottom Row: Estimated orthogonal basis functions, ps is chosen to
maintain rEVE at 70% in (12), and the number of components k£ = 3 is chosen to explain at

least 85% of the total variance.

6. APPLICATION TO COUNTRY MORTALITY DATA

The analysis of human mortality is important in assessing the future demographic prospects
of societies, and quantifying differences between countries with regard to the overall public
health measure. Functional data analysis approaches have been previously applied to study
mortality data (Hyndman et al., 2007; Chiou and Miiller, 2009; Chen and Miiller, 2012). To
study the variational modes of mortality rates across countries over years, we applied the
proposed LEPCA method to period life tables for 27 countries, with rates of mortality at age
60 available for each of the calendar years from 1960 to 2006. The data were obtained from
the Human Mortality Database (downloaded on March 1, 2011), maintained by University of
California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany).
The data is available at www.mortality.org or www.humanmortality.de, with detailed

description in Wilmoth et al. (2007).
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Let X;(t) denote the mortality rate in the ith country for subjects at age 60 during
calendar year t, where 1960 < ¢t < 2006. We directly compute the sample covariance
matrix S from the observed data and apply the proposed algorithm to solve problem (5).
The p; chosen by 5-fold cross-validation (9) is always used to ensure a relatively smooth
estimate of the eigenfunction, and the solution path along different levels of localization is
investigated. The 5-fold cross-validation method gave p; = 0, indicating the eigenfunctions
are not exactly localized. The estimated eigenfunctions without localization penalty are
given in the top row of Figure 4. We then choose p; by the second method as defined in
(13) with a = 30%. The estimated localized basis functions, as visualized in the bottom
row of Figure 4, reveal several interesting features. The first localized basis function ¢;(t),
explaining 54% of the total variance, indicates that a big variation of the mortality functions
X;(t) around their mean function happens around mid 1990s. The second basis function
¢o(t) with a mode around 1980s accounts for 21.2% of the total variation. The third basis
function ¢5(t) characterizes variation of mortality around 1960s. Although the first localized
basis function explains less variance than the first leading eigenfunction, only retaining 70%
of the capability in return of localization, the lost proportion is picked up by the second
component. The second component could have explained 30.3% of the variance without
localization. Therefore, we only need three localized eigenfunctions to account for more
than 85% of the total variance. Plots of estimated eigenvalues using other values of a are

provided in the Online Supplementary File.

7. DISCUSSION

In this paper, we propose a localized functional principal component analysis through a De-
flated Fantope Localization method, where sequentially obtained eigenfunctions have guar-
anteed orthogonality and are allowed to be supported on different localized subdomains. As
mentioned in Section 2, the deflated Fantope Dj; can easily be generalized to a d-dimensional
version Dg. In some applications, one might be interested to estimate mutually orthogonal

principal subspaces with dimensions dy, . . ., di, and each principal subspace is only supported
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on a subdomain 7; C 7.

Throughout the paper, we mainly focus on a dense and regular functional data design
where p equally spaced observations are recorded on each curve. Most commonly seen
functional data have this design and a sample covariance can be easily computed from
the discrete and possibly noisy observations. Our proposed formula (5) takes the sample
covariance S and outputs smooth and localized estimates of eigenfunctions. In fact the
proposed method puts rather minimal requirement on the input matrix S and does not rely on
the design of observations. Consider the discretized version of I" by evaluating on px p equally
spaced grid points. The estimation error of the eigenfunctions directly ties to the maximum
entry-wise error of the input matrix S. Here we briefly discuss several scenarios where a
sample covariance is not feasible. (i) For dense but irregularly observed functional data, one
can simply smooth each curve (Ramsay and Silverman, 2005) or interpolate between points
to get p equally spaced observations, and then a p x p covariance estimate S can be computed.
This is what we have done for the Berkeley growth data given in the Online Supplementary
File. (ii) For sparse functional data where the observations are recorded at random and sparse
time points, individual smoothing or interpolation is impossible. But a uniformly consistent
covariance estimation is possible by, for example, two-dimensional smoothing methods (Yao
et al., 2005; Li et al., 2010). Our proposed LEFPCA can then be applied by taking S as the
discretized version of the smooth covariance estimator. (iii) For ultra dense and noisy data,
the independent measurement errors accumulate if one uses sample covariance computed
from the raw measurements. Moreover, using a large p X p matrix is not computationally
efficient. We recommend performing pre-smoothing or pre-binning on individual curves and
choosing a grid with a moderate size p.

We proposed two methods of choosing the localization parameter p;. When the cross-
validation method chooses py = 0, it roughly means that the true eigenfunctions are not
localized. Then for a fixed number of a, we find a set of orthogonal basis functions that
retain the ability to explain a fair amount of variance (at least a (1 —a) proportion) and are

localized. In this case, the outcome would depend on the choice of a and they should not
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be interpreted as the true eigenfunctions. Rather, these localized basis functions and the

corresponding projection scores have ready interpretation with domain knowledge.

REFERENCES

Bhatia, R. (1997), Matriz analysis, vol. 169, Springer.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011), “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Foundations
and Trends®) in Machine Learning, 3, 1-122.

Bunea, F. and Xiao, L. (2015), “On the sample covariance matrix estimator of reduced
effective rank population matrices, with applications to fPCA,” Bernoulli, to appear.

Cardot, H. (2000), “Nonparametric estimation of smoothed principal components analysis
of sampled noisy functions,” Journal of Nonparametric Statistics, 12, 503—-538.

Castro, P. E., Lawton, W. H., and Sylvestre, E. A. (1986), “Principal Modes of Variation
for Processes with Continuous Sample Curves,” Technometrics, 28, 329-337.

Chen, K. and Miiller, H.-G. (2012), “Modeling repeated functional observations,” Journal
of the American Statistical Association, 107, 1599-1609.

Chiou, J.-M. and Miiller, H.-G. (2009), “Modeling hazard rates as functional data for the
analysis of cohort lifetables and mortality forecasting,” Journal of the American Statistical
Association, 104, 572-585.

d’Aspremont, A., El Ghaoui, L., Jordan, M., and Lanckriet, G. (2007), “A Direct Formula-
tion of Sparse PCA using Semidefinite Programming,” SIAM Review, 49.

Dattorro, J. (2005), Convex Optimization & FEuclidean Distance Geometry, Meboo Publish-
ing USA, v2012.01.28.

Gasser, T., Miiller, H.-G., Kohler, W., Prader, A., Largo, R., and Molinari, L. (1985), “An
analysis of the mid-growth and adolescent spurts of height based on acceleration,” Annals
of Human Biology, 12, 129-148.

Hall, P. and Hosseini-Nasab, M. (2006), “On properties of functional principal components

analysis,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68,

22



109-126.

Hall, P., Miiller, H.-G., and Wang, J.-L. (2006), “Properties of principal component methods
for functional and longitudinal data analysis,” The Annals of Statistics, 1493-1517.

Huang, J. Z., Shen, H., Buja, A., et al. (2008), “Functional principal components analysis
via penalized rank one approximation,” FElectronic Journal of Statistics, 2, 678-695.

Hyndman, R. J., Ullah, S., et al. (2007), “Robust forecasting of mortality and fertility rates:
a functional data approach,” Computational Statistics € Data Analysis, 51, 4942-4956.

James, G. M., Wang, J., and Zhu, J. (2009), “Functional linear regression that’s inter-
pretable,” The Annals of Statistics, 2083-2108.

Kneip, A., Sarda, P., et al. (2011), “Factor models and variable selection in high-dimensional
regression analysis,” The Annals of Statistics, 39, 2410-2447.

Lei, J. and Vu, V. Q. (2015), “Sparsistency and Agnostic Inference in Sparse PCA,” The
Annals of Statistics, to appear.

Li, Y., Hsing, T\, et al. (2010), “Uniform convergence rates for nonparametric regression and
principal component analysis in functional/longitudinal data,” The Annals of Statistics,
38, 3321-3351.

Lin, Z. (2013), “Some perspectives of smooth and locally sparse estimators,” Master thesis,
Sitmon Fraser University, Canada.

Mackey, L. (2008), “Deflation Methods for Sparse PCA,” in NIPS, vol. 21, pp. 1017-1024.

Miihl, A., Herkner, K., and Swoboda, W. (1991), “[The mid-growth spurt—a pre-puberty
growth spurt. Review of its significance and biological correlations|,” Padiatrie und Padolo-
gie, 27, 119-123.

Ramsay, J. O. and Silverman, B. W. (2005), Functional Data Analysis, Springer Series in
Statistics, New York: Springer, 2nd ed.

Rice, J. A. and Silverman, B. W. (1991), “Estimating the mean and covariance structure
nonparametrically when the data are curves,” Journal of the Royal Statistical Society.
Series B (Methodological), 233-243.

Sheehy, A., Gasser, T., Molinari, L., and Largo, R. (1999), “An analysis of variance of

23



the pubertal and midgrowth spurts for length and width,” Annals of human biology, 26,
309-331.

Silverman, B. W. (1996), “Smoothed functional principal components analysis by choice of
norm,” The Annals of Statistics, 24, 1-24.

Tuddenham, R. and Snyder, M. (1954), “Physical growth of California boys and girls from
birth to age 18,” Calif. Publ. Child Deve., 1, 183-364.

Van Der Vaart, A. W. and Wellner, J. A. (1996), Weak Convergence, Springer.

Vu, V. Q., Cho, J., Lei, J., and Rohe, K. (2013), “Fantope Projection and Selection: A near-
optimal convex relaxation of sparse PCA,” in Advances in Neural Information Processing
Systems, pp. 2670-2678.

Vu, V. Q. and Lei, J. (2013), “Minimax sparse principal subspace estimation in high dimen-
sions,” The Annals of Statistics, 41, 2905-2947.

White, P. A. (1958), “The computation of eigenvalues and eigenvectors of a matrix,” Journal
of the Society for Industrial & Applied Mathematics, 6, 393-437.

Wilmoth, J. R., Andreev, K., Jdanov, D., Glei, D. A., Boe, C., Bubenheim, M., Philipov,
D., Shkolnikov, V., and Vachon, P. (2007), “Methods protocol for the human mortality
database,” University of California, Berkeley, and Mazx Planck Institute for Demographic
Research, Rostock. URL: hitp://mortality. org [version 31/05/2007].

Yao, F., Miiller, H.-G., and Wang, J.-L. (2005), “Functional data analysis for sparse longi-
tudinal data,” Journal of the American Statistical Association, 100, 577-590.

Zhao, Y., Ogden, R. T., and Reiss, P. T. (2012), “Wavelet-based LASSO in functional linear
regression,” Journal of Computational and Graphical Statistics, 21, 600-617.

Zhou, J., Wang, N.-Y., and Wang, N. (2013), “Functional linear model with zero-value

coefficient function at sub-regions,” Statistica Sinica, 23, 25.

24



